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BSP 
generation 

Energy-aware 
generation 

To paraphrase Benjamin Franklin: 

“An [infrastructure], if you can keep it.” 
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A conclusion up front: 
n Hope for some of today’s best algorithms to 

make the leap 
  greater concurrency 
  less synchrony 
  built-in resilience (“algorithm-based fault tolerance” or 

ABFT) 

n Programming models will have to be severely 
stretched 

n Everything should be “on the table” for trades 
“over the threshold” 
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Motivation 
n High performance with high productivity on 

“the multis”: 
  Multi-scale, multi-physics problems in multi-

dimensions 
  Using multi-models and/or multi-levels of refinement 
  Exploiting polyalgorithms in multiple precisions in 

multi-protocol programming styles 
  On multi-core, massively multi-processor systems 
  Requiring a multi-disciplinary approach 
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Motivation 
n High performance with high(-est possible) 

productivity on “the multis”: 
  Multi-scale, multi-physics problems in multi-

dimensions 
  Using multi-models and/or multi-levels of refinement 
  Exploiting polyalgorithms in multiple precisions in 

multi-protocol programming styles 
  On multi-core, massively multi-processor systems 
  Requiring a multi-disciplinary approach 

Can’t cover all this in one talk… 
Given the architectural stresses, how can new algorithms help? 
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Purpose of the presentation 
n  Increase quality of “co-design” dialog between 

application user-developers and systems 
software and hardware developers 

n Vendors are surprisingly willing 
  No longer one type of vendor  
  All vendors motivated by some mass market 

  Low-power (smartphones, remote sensors, etc.) 
  High graphics throughput (gaming, entertainment, etc.) 
  High reliability (business, data centers, etc.) 

  Unfortunately, computational scientists want all three 
  … and we are a relatively small market 
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Extrapolating exponentials eventually fails 
n  Scientific computing at a crossroads w.r.t. extreme scale 
n  Proceeded steadily for decades from giga- (1988) to tera- 

(1998) to peta- (2008) with  
  same SPMD programming model 
  same assumptions about who is responsible for what 
  same classes of algorithms (cf. 25 yrs. of Gordon Bell Prizes) 

n  Exa- is qualitatively different and will be much harder 
n  Core numerical analysis and scientific computing will 

confront exascale to maintain sponsor relevance 
  not a “distraction,” but an intellectual stimulus 
  potentially big gains in adapting to new hardware environment 
  the journey will be as fun as the destination 
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Relevance of exascale to users today 
n  Modelers are on the front line 

  without concurrent research in the form of new models and 
mathematics, the passage to exascale hardware will yield little 
new scientific fruit 

n  Scientists will find the computational power to do things 
many have wanted 
  more room for creativity in “post-forward” problems (inverse 

problems, control, data assimilation, uncertainty quantification) 
  scientists will participate in cross-disciplinary integration – 

“third paradigm” and “fourth paradigm” 
  remember that exascale at the lab means petascale on the desk 

n  We suggest some mathematical opportunities, after 
(quickly) reviewing the hardware challenges 
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Why exa- is different 

(Intel Sandy Bridge, 2.27B transistors) 

  after DARPA report of P. Kogge (ND) et al. and T. Schulthess (ETH) 

Going across the die will require an order of magnitude more! 
DARPA study predicts that by 2019: 
u  Double precision FMADD flop: 11pJ 
u  cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall) 

Which steps of FMADD take more energy?  

input 
input 

input 

output 

four 
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Today’s power costs per operation 

   projections c/o J. Shalf (LBNL) 

Remember that a pico (10-12) of something done exa (1018) 
times per second is a mega (106)-somethings per second 
u  100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!) 
u  In the USA, 1 MW-year costs $1M ($0.12/KW-hr × 8760 hr/yr) 

u  You “use” 1.4 KW continuously on average 

Operation approximate energy cost 

DP FMADD flop 100 pJ 

DP DRAM read-to-register 4800 pJ 

DP word transmit-to-neighbor 7500 pJ 

DP word transmit-across-system 9000 pJ 
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Why exa- is different 

Moore’s Law (1965) does not end but 
Dennard’s MOSFET scaling (1972) does 

Eventually processing will be 
limited by  transmission 

Robert Dennard, IBM 
(inventor of DRAM, 1966) 
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What will first “general purpose” exaflop/s 
machines look like? 

n Hardware: many potentially exciting paths beyond 
today’s CMOS silicon-etched logic, but not 
commercially at scale within the decade 

n Software: many ideas for general-purpose and 
domain-specific programming models beyond 
“MPI + X”, but not penetrating the main CS&E 
workforce within the decade 
  “X” is OpenMP, CUDA, OpenACC, pthreads, etc. 
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Tianhe-2 by Inspur / NUDT / Intel (June 2013) 

Main system: 32K Ivy Bridge + 48K Xeon Phi chips ~55 PF/s 

*Front-end: 4K Galaxy FT-1500 chips, 59 TF/s 
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Tianhe-2 vs. envisioned exascale hardware:  
a heterogeneous, distributed memory 
GigaHz KiloCore MegaNode system 

Tianhe-2 (2013) Exa (2020) Ratio to go 
Number of nodes 16,000 

 (each 2 Ivy + 3 Phi) 
1,000,000 ~60 

Node concurrency  24 Ivy + 171 Phi  
= 195 cores 

1,000 ~5 

Node memory (GB) 88 Ivy + 8 Phi = 96 64 (1) 
Node peak perf (GF/s)  422 Ivy + 3,009 Phi 

= 3,431 
1,000 (1) 

Total concurrency 3,120,000 1 B ~320 
Total memory (PB) 1.536  64 ~40 
Total peak perf (PF/s) 54.9  1,000 ~20 
Power (MW) 17.8 

(+ 24 MW cooling !) 
20 (1)  

   after P. Beckman (ANL) et al. 
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Some exascale themes 

  Clock rates cease to increase while arithmetic capacity 
continues to increase dramatically w/concurrency 
consistent with Moore’s Law 

  Storage capacity diverges exponentially below 
arithmetic capacity 

  Transmission capacity (memory BW and network BW) 
diverges exponentially below arithmetic capacity 

  Mean time between hardware interrupts shortens 
  Billions of dollars of scientific software hang in the 

balance until better algorithms arrive to span the 
architectural gap 
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Implications of operating on the edge 
n  Draconian reduction required in power per flop and per 

byte will make computing and copying data less reliable 
  voltage difference between “0” and “1” will be reduced 
  circuit elements will be smaller and subject to greater 

physical noise per signal 
  there will be more errors that must be caught and corrected 

n  Power may be cycled off and on or clocks slowed and 
speeded based on compute schedules and based on cooling 
capacity 
  makes per node performance rate unreliable 
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Implications of operating on the edge 
n  Expanding the number of nodes (processor-memory units)  

beyond 106 would not a serious threat to algorithms that lend 
themselves to well-amortized precise load balancing  
  provided that the nodes are performance reliable 

n  A real challenge is usefully expanding the number of cores on 
a node to 103 

  must be done while memory and memory bandwidth per node 
expand by (at best) ten-fold less (basically “strong” scaling) 

n  It is already orders of magnitude slower to to retrieve an 
operand from main DRAM memory than to perform an 
arithmetic operation – will get worse by another 
  “almost all” operands must come from registers or upper cache 
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“Missing” mathematics 
n New formulations with  

  greater arithmetic intensity (flops per bytes moved 
into and out of registers and upper cache) 

  reduced communication 
  reduced synchronization 
  assured accuracy with (adaptively) less floating-

point precision 
  algorithmic resilience to many types of faults 

n Quantification of trades between limiting resources 
n Plus all of the exciting analytical agendas that 

exascale is meant to exploit 
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Arithmetic intensity illustration 

Roofline model of 
numerical kernels on 
an NVIDIA C2050 
GPU (Fermi). The 
‘SFU’ label is used 
to indicate the use of 
special function 
units and ‘FMA’ 
indicates the use of 
fused multiply-add 
instructions.  
 
(The order of fast 
multipole method 
expansions was set 
to p = 15.) 

c/o L. Barba (BU); cf. “Roofline Model” of S. Williams (Berkeley) 
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Research in progress: FMM vs AMG 
preconditioning, strong scaling on Stampede* 

c/o Rio Yokota, KAUST 
* Poisson problem, Dirichlet BCs handled via BIE for FMM (cost included) 
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n  Classical: amortize communication over many power/reduce 
steps 
  s-step Krylov methods: power kernels with wide halos and extra 

orthogonalization 
  Block Krylov methods: solve b several independent systems at 

once with improved convergence (based on λmax/λb rather than 
λmax/λmin) 

  “tall skinny QR” (n×m): recursively double the row-scope of 
independent QRs – log p messages for p processors (vs. n log p) 

n  Invade classical steps:  
  operations dynamically scheduled with DAGs 
  NUMA-aware (local) work-stealing 

Reduction of frequency of communication 
and synchronization for Ax=b 
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Reduction of domain of synchronization 

•  Nonlinear Schwarz replaces a Newton method for a global 
nonlinear system, F(u)=0, 
–  which computes a global distributed Jacobian matrix and 

synchronizes globally in both the Newton step and in solving the 
global linear system for the Newton  

•  … with a set of local problems on subsets of the global 
nonlinear system 
–  each local  problem has only local synchronization 
–  all of the linear systems for local Newton updates have only local 

synchronization 
–  there is still global synchronization in a number of steps hopefully 

much fewer than required in the original Newton method 
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How are most workhorse simulations 
implemented at the infra-petascale today? 

n  Iterative methods based on data decomposition and 
message-passing 
  each individual processor works on a portion of the original 

problem and exchanges information at its boundaries with 
other processors that own portions with which it interacts 
causally, to evolve in time or to establish equilibrium 

  computation and neighbor communication are both fully 
parallelized and their ratio remains constant in weak scaling 

n The programming model is SPMD/BSP/CSP 
  Single Program, Multiple Data 
  Bulk Synchronous Programming  
  Communicating Sequential Processes 

n  PETSc, Trilinos, hypre, etc. 
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Estimating scalability  
 n  Given complexity estimates of the leading terms of: 

  the concurrent computation (per iteration phase) 
  the concurrent communication 
  the synchronization frequency 

n  And a model of the architecture including: 
  internode communication (network topology and protocol reflecting 

horizontal memory structure) 
  on-node computation (effective performance parameters including 

vertical memory structure) 

n  One can estimate optimal concurrency and optimal 
execution time 
  on per-iteration basis 
  simply differentiate time estimate in terms of problem size N and 

processor number P with respect to P 
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3D stencil computation weak scaling 
(assume fast local network, tree-based global reductions) 

n  Total wall-clock time per iteration (ignoring local comm.) 

n  For optimal P,                , or   
     
    or 
 
n   P can grow linearly with N, and running time increases 

“only” logarithmically – as good as weak scaling can be! 
n  Problems: (1) assumes perfect synchronization,  
                       (2) log of a billion may be “large”  

T (N,P) = A N
P
+C logP

!T
!P

= 0 !A N
P2

+
C
P
= 0

Popt =
A
C
N
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SPMD parallelism w/ domain decomposition: 
an endangered species? 

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian) 

Ω1 

Ω2 

Ω3 

A23 A21 A22 
rows assigned 

to proc “2” 
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Workhorse innards: e.g., Krylov-Schwarz,  
a bulk synchronous implicit solver 

local 
scatter 

Jac-vec 
multiply 

precond 
sweep 

daxpy  inner     
product 

Krylov 
iteration 

…

Idle time due to load imbalance becomes a 
challenge at, say, one billion cores, when 
one processor can hold up all of the rest at 
a synchronization point 

P1: 

P2: 

Pn: 


communication imbalance computation imbalance 
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Our programming idiom is nested loops, e.g.,  
Newton-Krylov-Schwarz 

  for (k = 0; k < n_Newton; k++) {   
     compute nonlinear residual and Jacobian   

            for (j = 0; j < n_Krylov; j++) {   
           forall (i = 0; i < n_Precon ; i++) { 

                          solve subdomain problems concurrently 
                  } // End of loop over subdomains  
                  perform Jacobian-vector product 
                  enforce Krylov basis conditions 
                  update optimal coefficients  
                  check linear convergence 
             } // End of linear solver 
             perform DAXPY update  
             check nonlinear convergence 
        } // End of nonlinear loop 

Newton 
loop 

Krylov 
loop 

concurrent 
preconditioner 

loop 

Outer loops (not shown): continuation, implicit timestepping, optimization 
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Dataflow illustration: generalized eigensolver 

c/o H. Ltaief (KAUST) 
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These loops, with their artifactual orderings, 
can be replaced with DAGs 

  Diagram shows a 
dataflow ordering of the 
steps of a 4×4 
symmetric generalized 
eigensolver 

  Nodes are tasks, color-
coded by type, and 
edges are data 
dependencies 

  Time is vertically 
downward 

c/o H. Ltaief (KAUST) 
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Co-variance matrix inversion on hybrid* 
CPU-GPU environment with DAG scheduling  

0.5 1 1.5 2 2.5
x 104

50

100

150

200

250

300

350

400

450

500

Matrix size

G
flo

p/
s

 

 
Tile Hybrid CPU−GPU
MAGMA
PLASMA
LAPACK

Dynamic 
Runtime 
System 

10X 

c/o Huda Ibeid (KAUST) et al. HiPC’11 (Bangalore) 

* On 8 Intel Xeons and 2 NVIDIA Teslas using StarPU (INRIA) 
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Research in progress: locality preserving work-
stealing on Cholesky solver gets 93% of DGEMM* 

c/o Rabab AlOmairy (KAUST), MS thesis 

* On AMD “Istanbul” 8439 SE with 8 sockets, 6 cores per socket, using OmpSs 
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Multiphysics w/ legacy codes: 
an endangered species? 

n  Many multiphysics codes operate like this, where the models may 
occupy the same domain in the bulk (e.g., reactive transport) or 
communicate at interfaces (e.g., ocean-atmosphere)* 

n  The data transfer cost represented by the blue and green arrows 
may be much higher than the computation cost of the models, 
even apart from first-order operator splitting error and possible 
instability  

Model 1 

Model 2
(subcycled) 

*see “Multiphysics simulations: challenges and opportunities” (IJHPCA) 
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Many codes have the algebraic and software 
structure of multiphysics 

  Exascale is motivated by these: 
  uncertainty quantification, inverse problems, 

optimization, immersive visualization and steering 

  These may carry auxiliary data structures to/from 
which blackbox model data is passed and they act 
like just another “physics” to the hardware 
  pdfs, Lagrange multipliers, etc. 

  Today’s separately designed blackbox algorithms 
for these may not live well on exascale hardware: co-
design may be required due to data motion 
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Multiphysics layouts must invade blackboxes 

ocean 
atm 

ice 

c/o W. D. Gropp (UIUC) 

n  Each application must 
first be ported to 
extreme scale 
(distributed, hierarchical 
memory) 

n  Then applications may 
need to be interlaced at 
the data structure level 
to minimize copying and 
allow work stealing at 
synchronization points 
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Multiphysics modeling of CO2 sequestration by 
coupling PDEs and molecular dynamics 

c/o Kai Bao (KAUST) et al., SPE’13 

Blue Gene/P strong scaling –  
Reservoir Simulator 

Blue Gene/P strong scaling –  
Molecular Dynamics 
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Bad news/good news (1) 
  One may have to explicitly control data 

motion 
  carries the highest energy cost in the exascale 

computational environment 

  One finally will get the privilege of 
controlling the vertical data motion 
  horizontal data motion under control of users under Pax 

MPI, already  
  but vertical replication into caches and registers was 

(until now with GPUs) scheduled and laid out by 
hardware and runtime systems, mostly invisibly to users 



ATPESC 2013 

Bad news/good news (2) 
  “Optimal” formulations and algorithms may lead 

to poorly proportioned computations for exascale 
hardware resource balances 
  today’s “optimal” methods presume flops are expensive and 

memory and memory bandwidth are cheap 

  Architecture may lure users into more 
arithmetically intensive formulations (e.g., fast 
multipole, lattice Boltzmann, rather than mainly 
PDEs) 
  tomorrow’s optimal methods will (by definition) evolve to 

conserve what is expensive 
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Bad news/good news (3) 

  Hardware nonuniformity may force 
abandonment of the Bulk Synchronous 
Programming (BSP) paradigm 
  it will be impossible for the user to control load 

balance sufficiently to make it work 

  Hardware and algorithmic nonuniformity will 
be indistinguishable at the performance level 
  good solutions for the dynamically load balancing in 

systems space will apply to user space, freeing users 
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Bad news/good news (4) 
  Fully deterministic algorithms may simply come 

to be regarded as too synchronization-vulnerable 
  Rather than wait for data, we may infer it, taking into account 

sensitivity to poor  guesses, and move on  

  A rich numerical analysis of algorithms that 
make use of statistically inferred “missing” 
quantities may emerge 
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Bad news/good news (5) 
  Fully reliable executions may simply come to be regarded 

as too costly/synchronization-vulnerable 
  Algorithmic-based fault tolerance (ABFT)will be much 

cheaper than hardware and OS-mediated reliability 
  Developers will partition their data and their program units into 

two sets 
  A small set that must be done reliably (with today’s standards 

for memory checking and IEEE ECC) 
  A large set that can be done fast and unreliably, knowing the 

errors can be either detected, or their effects rigorously bounded 

  Examples in direct and iterative linear algebra 
  anticipated by Von Neumann, 1956 (“Synthesis of reliable 

organisms from unreliable components”) 
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Bad news/good news (6) 

  Default use of (uniform) high precision may come to an 
end, as wasteful of storage and bandwidth 
  Representation of a smooth function in a hierarchical basis 

requires fewer bits than storing its nodal values 
  we will have to compute and communicate “deltas” between 

states rather than the full state quantities, as we did when double 
precision was expensive (e.g., iterative correction in linear 
algebra) 

  a combining network node will have to remember not just the last 
address, but also the last values, and send just the deltas 

  Equidistributing errors properly while minimizing 
resource use will lead to innovative error analyses in 
numerical analysis 
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Research in progress: reducing precision in the new 
QDHWeig eigensolver (Higham, 2013) 

c/o Dalal Sukkari (KAUST), MS thesis 

* Dual-socket 8-core (16 cores total), Intel(R) Xeon(R) CPU E5-2650 
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How will PDE computations adapt? 
n  Programming model will still be message-passing (due to 

large legacy code base), adapted to multicore or hybrid 
processors beneath a relaxed synchronization MPI-like 
interface 

n  Load-balanced blocks, scheduled today with nested loop 
structures will be separated into critical and non-critical 
parts 

n  Critical parts will be scheduled with directed acyclic 
graphs (DAGs) 

n  Noncritical parts will be made available for work-stealing 
in economically sized chunks 
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Adaptation to  
asynchronous programming styles 

n  To take full advantage of such asynchronous algorithms, we 
need to develop greater expressiveness in scientific 
programming 
  create separate threads for logically separate tasks, whose priority is 

a function of algorithmic state, not unlike the way a time-sharing OS 
works 

  join priority threads in a directed acyclic graph (DAG), a task graph 
showing the flow of input dependencies; fill idleness with noncritical 
work or steal work 

n  Steps in this direction  
  Asynchronous Dynamic Load Balancing (ADLB) [Lusk (Argonne), 

2009] 
  Asynchronous Execution System [Steinmacher-Burrow (IBM), 2008]  
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n  Can write code in styles that do not require artifactual 
synchronization 

n  Critical path of a nonlinear implicit PDE solve is essentially 
… lin_solve, bound_step, update; lin_solve, bound_step, update … 

n  However, we often insert into this path things that could be done 
less synchronously, because we have limited language 
expressiveness 
  Jacobian and preconditioner refresh 
  convergence testing 
  algorithmic parameter adaptation 
  I/O, compression 
  visualization, data mining 

 

Evolution of Newton-Krylov-Schwarz: 
breaking the synchrony stronghold 
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Sources of nonuniformity 
n  System 

  Already important: manufacturing, OS jitter, TLB/cache 
performance variations, network contention,  

  Newly important: dynamic power management, more soft errors, 
more hard component failures, software-mediated resiliency, etc. 

n  Algorithmic 
  physics at gridcell/particle scale (e.g., table lookup, equation of 

state, external forcing), discretization adaptivity, solver adaptivity, 
precision adaptivity, etc. 

n  Effects of both types are similar when it comes to waiting 
at synchronization points 

n  Possible solutions for system nonuniformity will improve 
programmability, too 
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Programming practice 
n  Prior to possessing exascale hardware, users can prepare 

themselves by exploring new programming models  
  on manycore and heterogeneous nodes 

n  Attention to locality and reuse is valuable at all scales  
  will produce performance paybacks today and in the future 
  domains of coherence will be variable and hierarchical 

n  New algorithms and data structures can be explored 
under the assumption that flop/s are cheap and moving 
data is expensive 
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Path for scaling up applications 
n  “Weak scale” applications up to distributed memory limits 

  proportional to number of nodes 
n  “Strong scale” applications beyond this 

  proportional to cores per node/memory unit 
n  Scale the workflow, itself 

  proportional to the number of instances (ensembles) 
  integrated end-to-end simulation 

n  Algorithm-architecture co-design process is staged, with 
any of these types of scaling valuable by themselves 

n  Big question: does the software for co-design factor? Or is 
all the inefficiency at the data copies at interfaces between 
the components after a while? 
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Required software enabling technologies 
      Model-related 

  Geometric modelers 
  Meshers 
  Discretizers 
  Partitioners 
  Solvers / integrators 
  Adaptivity systems 
  Random no. generators 
  Subgridscale physics  
  Uncertainty 

quantification 
  Dynamic load balancing 
  Graphs and 

combinatorial algs. 
  Compression  
 

        Development-related        
u  Configuration systems 
u  Source-to-source 

translators 
u  Compilers 
u  Simulators 
u  Messaging systems 
u  Debuggers 
u  Profilers 
 

      Production-related 
u  Dynamic resource 

management 
u  Dynamic performance 

optimization 
u  Authenticators 
u  I/O systems 
u  Visualization systems 
u  Workflow controllers 
u  Frameworks 
u  Data miners 
u  Fault monitoring, 

reporting, and recovery 

High-end computers come 
with little of this stuff. 

Most has to be contributed 
by the user  community 
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  CS	
  

Math	
  

Applica-ons	
  

Enabling	
  
technologies	
  
respond	
  to	
  all	
  

Many	
  
applica-ons	
  

drive	
  

U. Schwingenschloegl 

A. Fratalocchi G. Schuster F. Bisetti R. Samtaney 

G. Stenchikov 

I. Hoteit V. Bajic M. Mai 
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DOE’s Exascale Mathematics Working Group 

n  74 fascinating 2-page whitepapers contributed by the 
international community to the EMWG at  

           https://collab.mcs.anl.gov/display/examath/Submitted+Papers 

n  To be discussed this coming 20-21 August 2013 in DC 
n  Randomized algorithms 
n  On-the-fly data compression 
n  Mining massive data sets 
n  Algorithmic-based fault tolerance 
n  Adaptive precision algorithms 
n  Concurrency from dimensions beyond space (time, phase 

space, stochastic parameters) 
n  etc. 
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Randomized algorithms  
in subspace correction methods 

n  Solve  Ax=b  by pointwise 
relaxation 

n  Gauss-Seidel (1823) 
n  deterministic and pre-

ordered 
n  Southwell (1935) 

n  deterministic and 
dynamically ordered 

n  Griebel-Oswald (2011) 
n  random (and 

dynamically ordered) 
n  Excellent convergence w/ 

fault tolerance and 
synchronization reduction 

c/o M. Griebel et al. (U Bonn) 
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Hierarchical representations for extreme data 
n  Saving most simulation results to persistent storage will be 

impractical; instead hybrid in situ / in transit analysis 
n  Challenges: 

n  On-the-fly compression 

n  Algorithmic idea: sparse grids 

O(nd )!O(n " (logn)d#1)

O(n! p )"O(n! p # (logn)k )

Storage complexity 
 
(spatial dimension d) 

Representation accuracy 
 
(order p; k depends on p, d) 

c/o H. Bungartz et al. (TU Munich) 
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How do sparse representations work? 

c/o J. Garcke et al. (U Bonn) 
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Acknowledgment: 
 today’s Peta-op/s machines  

1012 neurons @ 1 KHz = 1 PetaOp/s 
1.4 kilograms, 20 Watts 



See 2011 special issue of Comptes Rendus 

Exaflop/s: The why and the 
how, D. E. Keyes, Comptes 
Rendus de l’Academie des 
Sciences 339, 2011, 70—77. 



Thank you 

 ششككرراا   

david.keyes@kaust.edu.sa 

KAUST is 
recruiting!  Your 

office here J 


